
Master 2 Internship 2026

Optimizing Inter-Function Communication in Server

less Systems

Supervisors: Alessio Pagliari, Marc Shapiro
Contacts: alessio.pagliari@lip6.fr, marc.shapiro@acm.org

Start: Around February/March 2026
Duration: 6 months

Location: LIP6, DELYS Team, Campus Pierre et Marie Curie, 4 Place Jussieu, 75005 Paris

Context
The “serverless” paradigm [1] allows executing functions (small pieces of code) on demand, without managing
servers. A platform automatically launches a function when an event arrives, executes the code, returns a result,
and then releases the resources. This ephemeral nature facilitates scaling up and down. Platform examples:
AWS Lambda1, Google Cloud Functions2, and open-source solutions deployable locally such as OpenFaaS3 or
OpenWhisk4. Serverless has shown good results for batch data processing, for example MapReduce-style workloads
[2]. However, more and more use cases require real-time processing (IoT, monitoring, e-commerce), where data
arrives continuously and must be processed without delay by pipelines of interconnected functions [3].

Motivation and challenges. To compose processing pipelines (dataflow [3]), current solutions rely on external
messaging systems (Kafka, cloud queues). This approach adds latency (tens to hundreds of ms per hop), requires
heavy infrastructure, and imposes costly serialization/deserialization. Direct communication between functions
(sockets, channels) would reduce latency and eliminate external dependencies. However, this raises major system
challenges that this internship proposes to explore.

Objectives
After a state-of-the-art study, the main objective will be to design and prototype a direct communication system
between serverless functions. The student will tackle one or more of the following system challenges:

• Lifecycle and discovery: How to synchronize the startup of these ephemeral processing chains: connection
requests to services still starting up, termination detection…

• Scaling and routing: When functions are replicated, how to balance routing while maintaining processing
consistency when certain functions are stateful (i.e. they maintain data between processing events)?

• Reliability: How to guarantee the complete functioning of the chain if we consider that functions are not
reliable? What mechanisms could be put in place to ensure chain detection and recovery?

• Performance: What system optimizations can be implemented to limit the overhead due to this FaaS archi
tecture while achieving latency and throughput compatible with stream computing application requirements
(memory mapping, zero-copy algorithms, thread placement…)?

Concretely, the work will include implementing a direct connection mechanism between functions, with an
orchestrator that manages the deployment and discovery of complex serverless applications. The final prototype
must at least enable communication between multiple functions in a simple pipeline deployed on an open-source
serverless platform.

Technologies: open-source platforms (OpenFaaS/OpenWhisk), system extensions in Go/Scala/C/Rust for low-
level mechanisms, functions in Python/Go/Java.

Prerequisites
Minimal:

• Fundamentals of distributed systems (consistency, fault tolerance, partitioning).
• System programming (e.g. sockets, threads, Docker containers).
• System and kernel resource management (memory, scheduling…).
• Comfortable with at least one language (C/Go/Python/Java).

Desired (but can be learned during the internship if needed):

• Streaming architectures (Kafka, Flink).
• Notions of consistent hashing, load balancing, service discovery.

1https://aws.amazon.com/lambda/
2https://cloud.google.com/functions
3https://www.openfaas.com/
4https://openwhisk.apache.org/

https://aws.amazon.com/lambda/
https://cloud.google.com/functions
https://www.openfaas.com/
https://openwhisk.apache.org/

Bibliography
[1] P. Castro, V. Ishakian, V. Muthusamy, and A. Slominski, “The rise of serverless computing,” Communications

of the ACM, 2019.

[2] D. Barcelona-Pons, P. Sutra, M. Sánchez-Artigas, G. Par\́is, and P. Garc\́ia-López, “Stateful serverless
computing with crucial,” ACM Transactions on Software Engineering and Methodology (TOSEM), 2022.

[3] Z. Li, C. Xu, Q. Chen, J. Zhao, C. Chen, and M. Guo, “Dataflower: Exploiting the data-flow paradigm for
serverless workflow orchestration,” in Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS), 2023.

	Context
	Objectives
	Prerequisites
	Bibliography

